Скорость мысли. Грандиозное путешествие сквозь мозг за 2,1 секунды - Марк Хамфрис
18
[2] Если нейробиологам везло и у них был доступ к таким приборам. Осциллографы [с электронно-лучевыми трубками] появились в широком обиходе ближе к 1930-м годам, поэтому самые ранние изображения мозговых импульсов, полученные, например, Эдгаром Эдрианом, сделаны с помощью самодельных приспособлений из часовых механизмов, пружин, проводов и катушек для преобразования этих крохотных скачков напряжения в движения пера на подвижной ленте.
19
[3] Интересные описания исследований нервных импульсов, от Гальвани и вплоть до работ Ходжкина и Хаксли в 1950-х годах, см. в книге McComas A. J., Galvani’s Spark: The Story of the Nerve Impulse. Oxford University Press, 2011.
20
{1} В 1963 году они получили Нобелевскую премию в области физиологии и медицины за свою модель для описания электрических механизмов, которые обусловливают генерацию и передачу нервного сигнала. – Прим. ред.
21
{2} Кальмары передвигаются реактивным способом, выбрасывая воду из внутренней полости. Резкое сокращение мышц позволяет им совершать «прыжки» с большой скоростью на короткие расстояния. Управление этими мышцами осуществляется как раз при помощи нейронов с гигантскими аксонами – диаметром до 1 мм (типичный диаметр аксона у млекопитающих в сотни раз меньше – около 2 мкм). Толщина гигантского аксона кальмара увеличивает скорость проведения нервного импульса: чем больше площадь поперечного сечения аксона, тем меньше его сопротивление. – Прим. пер.
22
[4] Использование термина «критический потенциал» здесь не случайно. Читатели, знакомые с основами нейробиологии, могут задаться вопросом, почему я не употребляю термин «порог», как в учебниках, где обычно говорится: «…когда потенциал достигает порога, возникает импульс». Однако я делаю так потому, что «порога» в смысле точного значения напряжения, при котором произойдет генерация импульса, не существует. Напряжение, при котором нейрон сгенерирует импульс (или «потенциал действия», «спайк», как официально называется волна возбуждения, перемещающаяся по мембране живой клетки. – Прим. пер.), зависит от того, что перед этим происходило с нейроном, и, что наиболее важно, от того, как давно он сгенерировал последний импульс. Таким образом, всегда существует такое напряжение – критический потенциал, – при котором возникнет импульс. Но величина этого напряжения не всегда будет одной и той же – то есть порога не существует. С объяснением – длиной в книгу – о том, почему для нейрона не существует пороговых значений, можно ознакомиться в сложной, но крайне интересной работе Евгения Ижикевича: Ижикевич Е. Динамические системы в нейронауке. Геометрия возбудимости и пачечной активности. Институт компьютерных исследований, 2018. Чтобы узнать, насколько изменчив может быть критический потенциал см., например: Platkiewicz J., Brette R. A threshold equation for action potential initiation // PLoS Computational Biology. 2010. № 6. e1000850.
23
[5] Gefter A. The man who tried to redeem the world with logic // Nautilus. 2015. 5 февраля. URL: http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic; Smalheiser N. R. Walter Pitts // Perspectives in Biology and Medicine. 2000. № 43. С. 217–226.
24
[6] von Neumann J. First draft of a report on the EDVAC // 1945 Technical Report / под ред. M. D Godfrey. URL: http://web.mit.edu/STS.035/www/PDFs/edvac.pdf.
25
{3} EDVAC (Electronic Discrete Variable Automatic Computer, Электронный дискретно-переменный автоматический вычислитель) – одна из первых электронных вычислительных машин. В отличие от своего предшественника ЭНИАКа это был компьютер на двоичной, а не десятичной основе. – Прим. пер.
26
[7] На самом деле даже связи, существующие между тремя слоями сетчатки глаза млекопитающего, уже настолько замысловаты, что заставляют задуматься, сможем ли мы разобраться в работе гораздо более сложно устроенного головного мозга. Для тех, кому нравятся технические подробности, вот краткий курс по устройству сетчатки. Колбочки первого слоя высвобождают глутамат на синапсы биполярных клеток второго слоя, а также на горизонтальные клетки. Задача биполярных клеток состоит в том, чтобы принимать информацию от колбочек и передавать ее клеткам третьего слоя. Работа горизонтальных клеток, имеющих разветвленную систему синапсов, соединенных с другими такими же клетками, заключается в том, чтобы подавлять передачу сигнала от колбочек к биполярным клеткам; они передают информацию друг другу на расстояния, значительно удаленные от соединенных с ними колбочек. Это создает конкуренцию сигналов: реакция биполярных клеток, находящихся дальше от активной колбочки, подавляется, чтобы реакция биполярных клеток рядом с активной горизонтальной клеткой или клетками, наоборот, выделялась на общем фоне.
Электрический потенциал биполярных клеток изменяется пропорционально величине паузы в выделении глутамата, который они получают от того типа колбочки (или колбочек), с которым они связаны. Биполярные клетки бывают двух видов: on– и off-биполяры. Клетки on-типа увеличивают свой электрический потенциал в ответ на паузы, сигнализируя об обнаружении фотонов; off-клетки уменьшают свое напряжение в ответ на паузы, сигнализируя об уменьшении темноты. В свою очередь все биполярные клетки выделяют глутамат пропорционально своему электрическому потенциалу на синапсы нейронов третьего слоя – ганглиозных клеток сетчатки (тех, которые передают импульсы в мозг) и амакриновых клеток (которые подавляют ганглиозные клетки и/или осуществляют ингибирующую обратную связь к биполярным клеткам).
В сетчатке мышей присутствует как минимум девять типов биполярных клеток и по крайней мере сорок типов амакриновых клеток. Количество типов определяется тем, на какие стимулы они реагируют. Подробное описание схемы функционирования сетчатки см.: Demb J. B., Singer J. H. Functional circuitry of the retina // Annual Review of Vision Science. 2015. № 1. С. 263–269. Мы знаем о биполярных клетках абсурдно много: см. Euler T., Haverkamp S., Schubert T. и др. Retinal bipolar cells: Elementary building blocks of vision// Nature Reviews Neuroscience. 2014. № 15. С. 507–519. Подробное описание того, почему сетчатка устроена таким образом, см. в главе 11 книги: Sterling P., Laughlin S. B. Principles of Neural Design. MIT Press, 2015. Для тех, кто хочет продвинуться дальше, – полезный онлайн-учебник Webvision от Хельги Колб и ее коллег: https://webvision.med.utah.edu/.
27
{4} Речь о работе 1959 года, ставшей классической, «Что говорит глаз лягушки мозгу лягушки». – Прим. пер.
28
[8] Gefter A. The man who tried to redeem the world with logic // Nautilus. 2015. 5 февраля. URL: http://nautil.us/issue/21/information/the-man-who-tried-to-redeem-the-world-with-logic.
29
[9] Brecht M., Preilowski B., Merzenich M. M. Functional architecture of the mystacial vibrissae // Behavioural Brain Research. 1997. № 84. С. 81–97.
30
[10] Bale M. R., Campagner D.,